PREPARATION OF DEUTERIUM LABELLED α-AMINO-3-HYDROXY5-METHYLISOXAZOLE-4-PROPIONIC ACID (AMPA) Jørn Lauridsen and Tage Honoré Royal Danish School of Pharmacy, Department of Chemistry BC, 2, Universitetsparken, DK-2100 Copenhagen Ø, Denmark. #### SUMMARY The preparation of α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) with deuterium α to the carboxylic acid group (2) and in the exocyclic methyl group (5), respectively, are described. The deuterium labelled AMPA (2) was synthesized by hydrolysis and decarboxylation of the corresponding di-ester (1), whereas the deuterium labelled AMPA (5) was prepared via a catalytic deuteration of the bromoderivative (3). Key Words: AMPA, Glutamic Acid Agonist, Deuterium # INTRODUCTION L-Glutamic acid (GLU) is a putative excitatory transmitter in the mammalian central nervous system based on *in vivo* experiments. 1-4 The understanding of the mechanism involved in receptor mediated excitations produced by GLU, will be facilitated by the identification and characterization of the physiological GLU-receptor using ligand binding techniques. Several attempts have been made to identify the GLU-receptor using [³H]GLU and [³H]kainic acid (KAIN), a structural analogue of GLU (Fig. 1), as ligands. 5-18 However, the characteristics of the binding sites so Figure 1. The structures of GLU, AMPA, and KAIN far detected are inconsistent with the characteristics of a physiological GLU receptor. The title compound α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, Fig. 1) has proved to be a very potent and selective GLU-agonist in $in\ vivo$ experiments. However, when tested as an inhibitor of [3 H]GLU and [3 H]KAIN binding AMPA was virtually inactive. Consequently, tritium labelled AMPA is an important tool in the search for the physiological GLU-receptor. The present paper describes the synthesis of deuterium labelled AMPA, which can also be applied for the synthesis of tritiated AMPA. #### RESULTS AND DISCUSSION AMPA was deuterium labelled i) in the position α to the carboxylic acid group and ii) in the exocyclic methyl group. The syntheses are outlined in scheme 1. Treatment of 1 with 6 M 2 HCl in 2 H $_2$ O gave, after removal of labile deuterium with water, labelled AMPA hydrochloride (2) with deuterium in the α -position to the carboxylic acid group. Treatment of 1 with N-bromosuccinimide (NBS) under free radical conditions was shown by $^{1}{\rm H}$ NMR spectroscopy to give 3 as the major product in contrast to the findings that NBS bromination of 4,5-dimethyl-3-methoxyisoxazole resulted in bromination in the 4-me- ## Scheme 1. thyl group. ²¹ Catalytic low pressure deuteration of 3 using triethylamine (TEA) as a base afforded the deuterated compound 4. Deprotection of 4 using 48 % aqueous HBr gave labelled AMPA (5) with deuterium in the exocyclic methyl group. In order to investigate the stability of deuterium in 2 the compound was dissolved in water and kept at ambient temperature for 36 h. The $^1\mathrm{H}$ NMR spectrum of the evaporated solution showed a minor content of non-labelled AMPA, which was not quantified. The instability of 2 was confirmed by experiments with the tritium labelled compound. 20 In these experiments 27 per cent of tritium were labilized on storage of the tritium labelled compound in aqueous solution for 2 days at 3 $^{\mathrm{O}}\mathrm{C}$. The deuterium in compound 5 was considered to be permanent, as the deuterium in compound 4 was stable in refluxing 48 % aqueous ${\tt HBr.}$ ## EXPERIMENTAL Melting points, determined in capillary tubes, are corrected. Analyses indicated by elemental symbols were within ± 0.4 % of the theoretical values and were performed by Mr. P. Hansen, Chemical Laboratory II, University of Copenhagen. A JEOL JMN-C-60HL (60 MHz) 1 H NMR instrument was used. 1 H NMR spectra were recorded using TMS as an internal standard, except for the compounds dissolved in $\rm D_2O$ where DSS was used. TLC and column chromatography were accomplished by using silica gel $\rm F_{254}$ plates (Merck) and silica gel, 0.063-0.100 (Woelm), respectively. $[\alpha^{-2}H]\alpha$ -Amino-3-hydroxy-5-methylisoxazole-4-propionic acid, hydrochloride (2). A solution of 1 21 (170 mg; 0.05 mmol) in 6 M 2 HCl in $^{2}H_{2}O$ (10 ml) was refluxed for 2 h. Evaporation followed by evaporation twice from $H_{2}O$ and recrystallization (glacial acetic acid:water) gave 2 (80 mg; 72 %). TLC [butanol-glacial acetic acid-water (4:1:1)]: comparison with an authentic sample of AMPA 21 corresponded. ^{1}H NMR ($D_{2}O$): δ 4.75 ($c\alpha$. 5 H, s), 3.00 (2 H, s), 2.30 (3 H, s). Ethyl α -ethoxycarbonyl- α -acetylamino-3-methoxy-5-bromomethylis-oxazole-4-propionate (3). To a solution of 1 21 (2.05 g; 6 mmol) in CCl₄ (12 ml) was added NBS (1.07 g; 6 mmol) and benzoyl peroxide (10 mg). The reaction mixture was refluxed for 30 min. Filtration and evaporation followed by column chromatography [methylene chloride - 2-butanone (95:5)] and recrystallization (ethylacetate-light petroleum) gave 3 (0.8 g; 32 %). M.p. 147.0-147.5 $^{\circ}$ C. Anal. C₁₅H₂₁BrN₂O₇: C, H, Br, N. IR (KBr): 3360 (m), 2980 (m), 1730 (s), 1660 (s), 1530 (s), 1500 (m) cm⁻¹. 1 H NMR (CDCl₃): $^{\circ}$ 6.7 (1 H, broad s), 4.5-4.0 (6 H, m containing a s), 3.95 (3 H, s), 3.45 (2 H, s), 2.05 (3 H, s), 1.30 (6 H, t, J 7 Hz). Ethyl α -ethoxycarbonyl- α -acetylamino-3-methoxy-5-[2 H]methylis-oxazole-4-propionate (4). To a solution of 3 (500 mg; 1.2 mmol) l^2 HJAMPA 1483 α-Amino-3-hydroxy-[2 H]methylisoxazole-4-propionic acid (5). A solution of 4 (130 mg; 0.4 mmol) in 48 % aqueous HBr (13 ml) was refluxed at 140 $^{\circ}$ C for 15 min. After evaporation and recrystallization (glacial acetic acid:ether) 5 (90 mg; 88 %) was obtained as s hydrobromide. TLC [butanol-glacial acetic acid-water (4:1:1)]: comparison with an authentic sample of AMPA 21 corresponded. 1 H NMR (D₂O): δ 4.75 (ϵ a. 5 H, s), 4.30 (1 H, t, ϵ 6.0 Hz), 3.00 (2 H, d, ϵ 6.0 Hz), 2.4-2.2 (2 H, m). - Curtis, D.R. and Johnston, G.A.R. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 69:97 (1974). - 2. Krnjević, K. Physiol. Rev. 418 (1974). - Curtis, D.R. In Filer, L.J., Jr., Garattini, S., Kare, M.R., Reynolds, W.A. and Wurtman, R.J., Eds., Glutamic Acid: Advances in Biochemistry and Physiology, Raven Press, New York 1979, p. 163. - Nistri, A. and Constanti, A. Prog. Neurobiol. (Oxford) 13:117 (1979). - 5. Michaelis, E.K., Michaelis, M.L. and Boyarsky, L.L. Biochim. Biophys. Acta 367:338 (1974). - 6. Michaelis, E.K. Biochem. Biophys. Res. Commun. 65:1004 (1975). - 7. Roberts, P.J. Nature (London) 252:399 (1974). - 8. De Roberto, E. and Fiszer de Plazas, S. J. Neurochem. 26:1237 (1976). - 9. Foster, A.C. and Roberts, P.J. J. Neurochem. 31:1467 (1978). - 10. Baudry, M. and Lynch, G. Eur. J. Pharmacol. 57:283 (1979). - 11. De Barry, J., Vincendon, G. and Gombos, G. FEBS Lett. 109:175 (1980). - 12. Biziere, K., Thompson, H. and Coyle, J.T. Brain Res. 183: 421 (1980). - 13. Simon, J.R., Contrera, J.F. and Kuhar, M.J. J. Neurochem. 26:141 (1976). - 14. London, E.D. and Coyle, J.T. Mol. Pharmacol. 15:492 (1979). - 15. Vincent, S.R. and McGeer, E.G. Life Sci. 24:265 (1979). - 16. Schwarz, R. and Fuxe, K. Life Sci. 24:1471 (1979). - 17. Henke, H, Neurosci. Lett. 14:247 (1979). - 18. Honoré, T., Lauridsen, J. and Krogsgaard-Larsen, P. J. Neurochem. 1980 (in press). - 19. Krogsgaard-Larsen, P., Honoré, T., Hansen, J.J., Curtis, D.R. and Lodge, D. Nature (London) 284:64 (1980). - 20. The Radiochemical Centre, Amersham, England. Personal Communication. - 21. Honoré, T. and Lauridsen, J. Acta Chem. Scand. <u>B34</u>:235 (1980).